Assessing the Costs of Power Outages in a Modern Economy

A Case Study from Cyprus

Theodoros Zachariadis¹ & Andreas Poullikkas²

¹ Cyprus University of Technology

² Electricity Authority of Cyprus

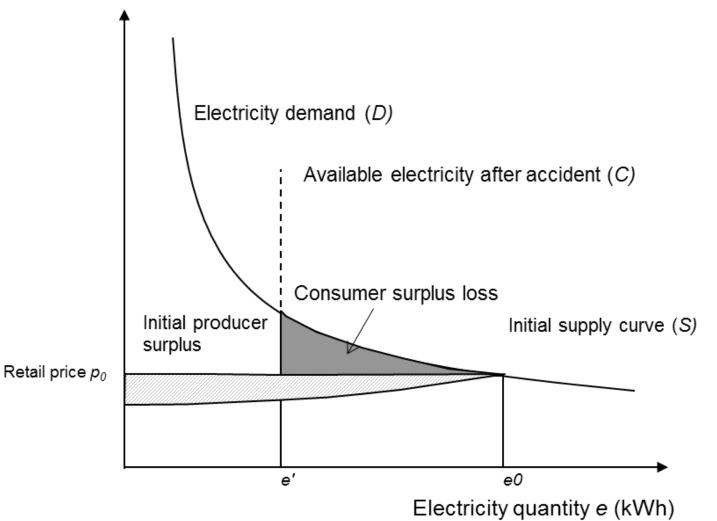
February 2013

Published in *Energy Policy* Vol. 51 (2012), pp. 630–641

Background

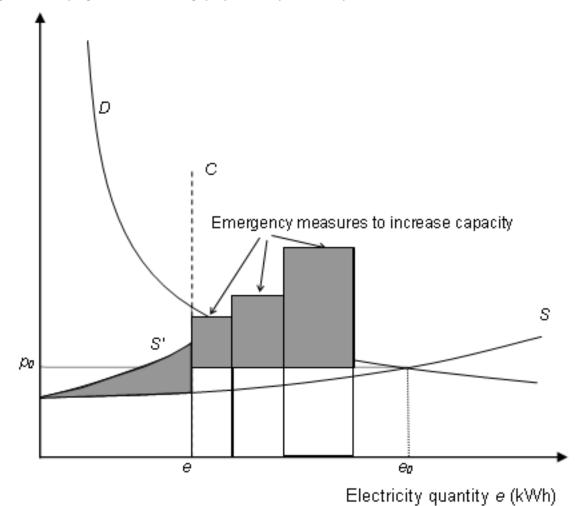
- Explosion in July 2011 destroyed 60% of national power generating capacity
 - > 390 MW of steam turbine plants
 - > 440 MW of combined cycle gas turbine plants
- Cyprus is electrically isolated
- Interruptions of electricity supply to consumers were implemented to cope with power shortage
- Emergency measures taken to eliminate shortages after summer 2011 (electricity imports, temporary rental of generators)

- How much did these power supply disruptions cost to households and firms?
- Were the supply-side emergency measures economically justified?
- ➤ Comparison of:
 - Costs of emergency measures vs.
 - Benefits, i.e. avoided economic losses thanks to these measures


(βλ. επίσης Πασιαρδής, Πασιουρτίδου & Ζαχαριάδης, Σχόλιο Οικονομικής Πολιτικής 23, ΚΟΕ, Παν/μιο Κύπρου, Αύγουστος 2011, http://www.ucy.ac.cy/erc/documents/Mari_Comment_03-08-11.pdf)

Economic & Engineering Approaches

- Top-down economic analysis: Welfare losses due to power shortages (demand function approach)
- 2. Bottom-up engineering analysis: The costs of emergency measures to increase the available capacity
- 3. Economic assessment of the value of lost electricity (production function):
 - Annual average values
 - Estimates by hour/day/season


Methodology to assess costs of power shortages with a demand function

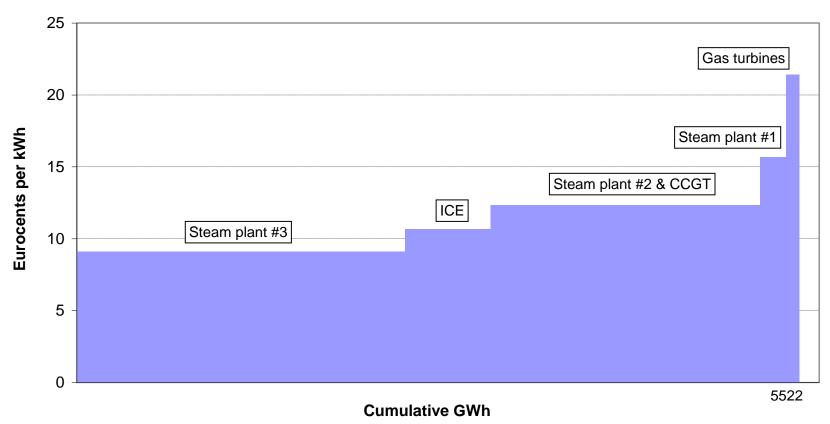
Willingness to pay for electricity *p* (Euros per kWh)

Changes in supply curve to replace lost power capacity in an emergency

Willingness to pay for electricity p (Euros per kWh)

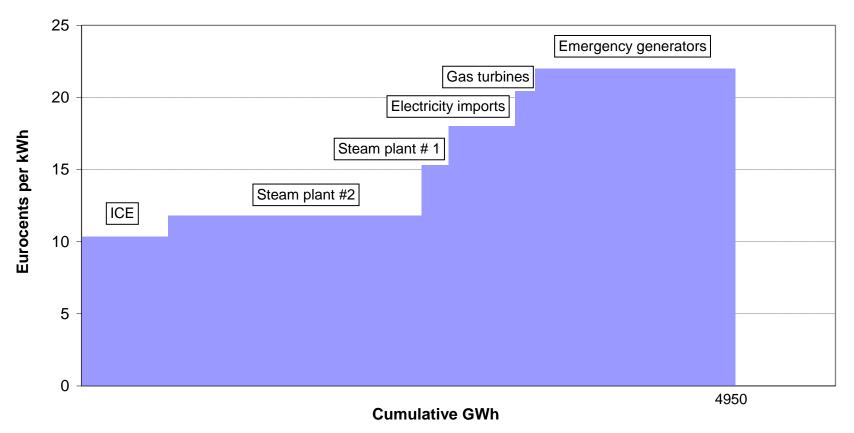
Welfare Losses Due to Power Shortages

- Model of consumer demand for electricity as a function of electricity prices, income and other variables
- Time-series econometric estimation with vector error correction (VEC) and autoregressive distributed lag (ARDL) specifications
- Identification of demand for electricity by type of consumer
- ⇒ Simulations of welfare losses due to restrictions in consumed quantities


Welfare Losses Due to Power Shortages

Simulations of real-world power interruptions by type of consumer and their associated costs

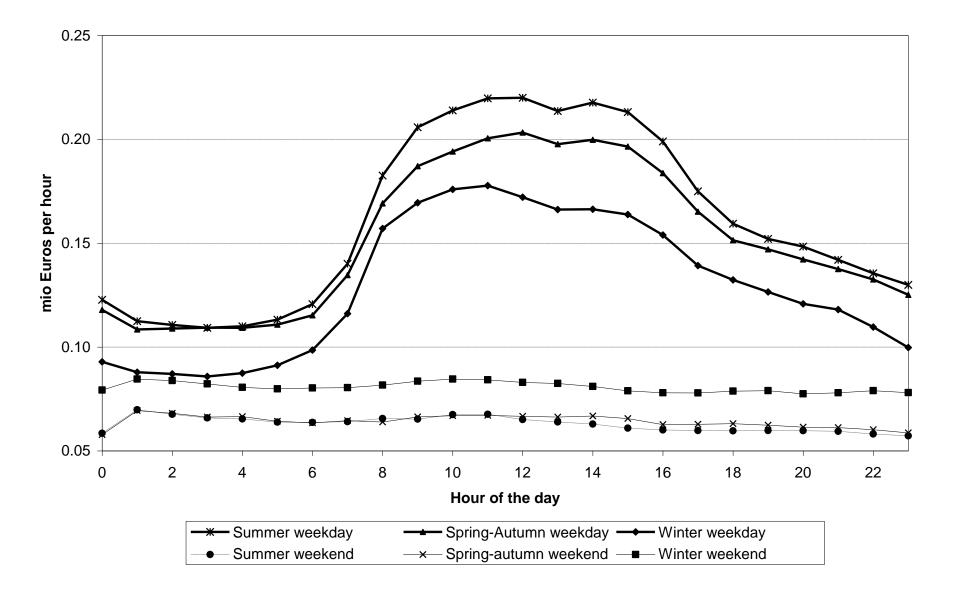
	Annual cost (million Euros at 2010 prices)			
Sector	Without emergency measures	With emergency measures	Difference	
Industrial	2.3	0.0	2.3	
Services	215.4	100.2	115.2	
Residential	179.7	91.6	88.1	
Total	397.4	192.6	205.6	


Bottom-Up Engineering Analysis – 1

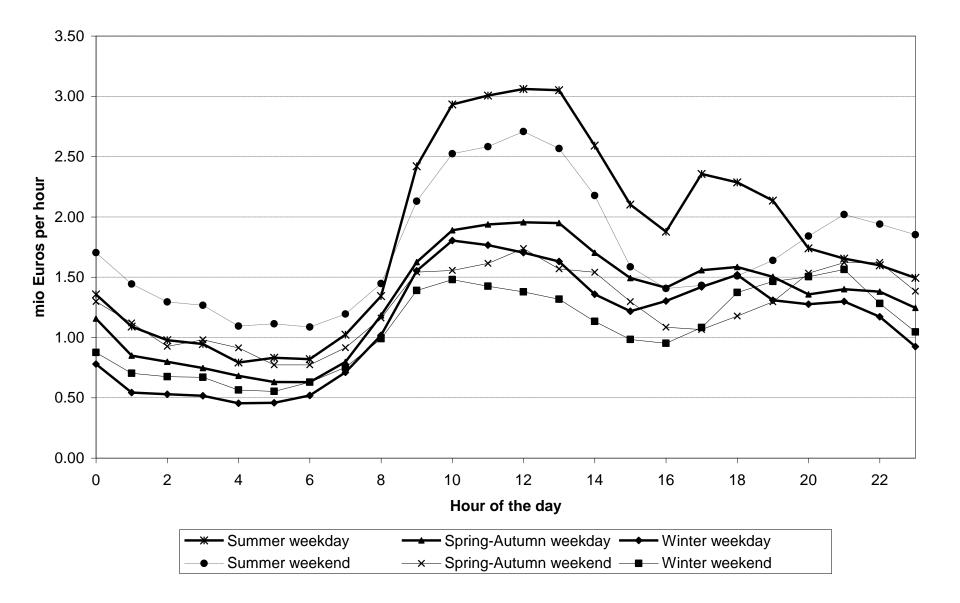
(a) Marginal electricity generating costs before the July 2011 explosion

Bottom-Up Engineering Analysis – 2

(b) Marginal electricity generating costs after the July 2011 explosion


Costs to Electricity Authority with & without Emergency Measures (in M€'2010)

Electricity generation costs	
before the accident	601.5
after the accident, with emergency measures	777.1
after the accident, without emergency measures	356.1
Change in costs with and without measures	421.0
Sales revenues of electricity authority	
before the accident	776.0
after the accident, with emergency measures	694.8
after the accident, without emergency measures	413.3
Change in revenues with and without measures	281.5
Sales revenues net of generating costs	
before the accident	174.5
after the accident with emergency measures	-82.3
after the accident without emergency measures	57.2
Net additional costs of emergency measures	139.6


Annual Value of Lost Electricity, Cyprus 2009

Sector	Electricity consumption	Value	Value of lost load	
	(GWh)	<i>(mio</i> €)	(€/kWh)	
Agriculture	151	346	2.30	
Mining & quarrying	27	52	1.90	
Manufacturing	546	1043	1.91	
cement industry	133	120	0.90	
Gas & water supply	249	51	0.20	
Construction	11	1249	118.06	
Services	1999	12243	6.12	
Public administration	135	1570	11.63	
Private offices	397	5551	13.97	
Health	94	628	6.65	
Trade	467	1872	4.00	
Hotels & restaurants	485	915	1.89	
Education	38	960	25.48	
Other	382	747	1.96	
Residential	1722	15614	9.07	
Total	4706	30598	6.50	

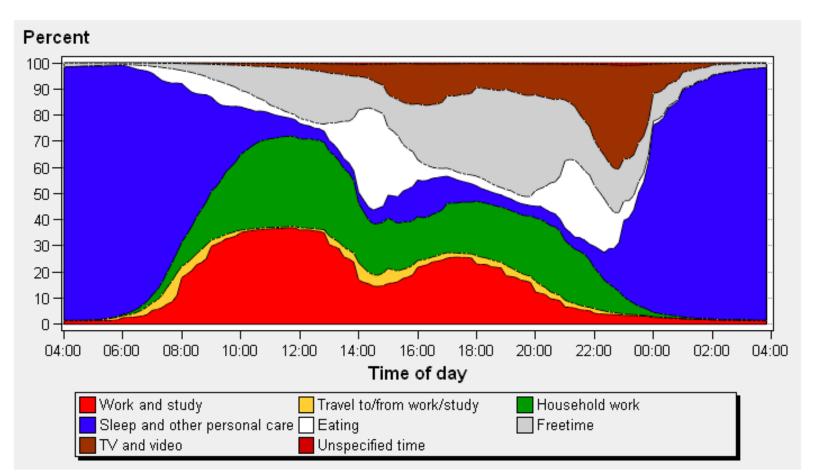
Value of Electricity in Industry, Cyprus 2009

Value of Electricity in Services, Cyprus 2009

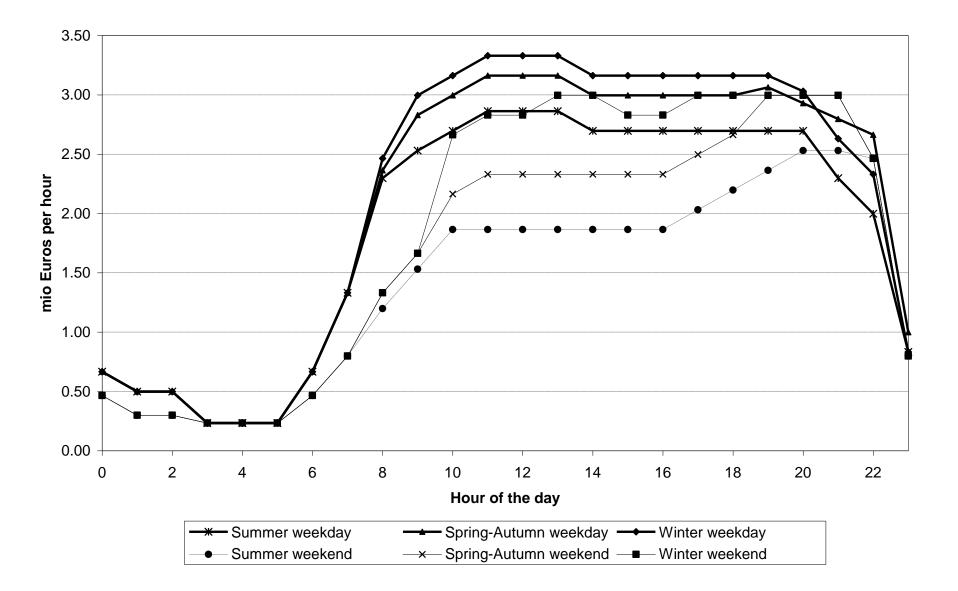
Assessing Value of Electricity in Households

 Value of residential electricity depends also on the activities carried out by house occupants in different hours of the day

E.g. a 1-hour outage at night vs. 1-hour outage in afternoon


- Constructed matrix of household activities by hour, season (summer, winter or spring-autumn) and day of the week (weekday or weekend)
- 3 types of activities:
 - > paid work at home (VOLL = net hourly wage)
 - Ieisure and domestic activities (half of paid work VOLL)
 - > sleep and outdoor activities (VOLL = 0).
- Hourly household activities not available for Cyprus, obtained from European Harmonised Time Use Survey for Mediterranean countries

Example of Time Use Survey results


(https://www.h2.scb.se/tus/tus/AreaGraphCID.html)

Areagraf - How time is used during the day Main activities: BY Country (CID)

Country=Spain

Value of Electricity in Households, Cyprus 2009

Economic Losses Due to Power Shortages Based on Time-Varying Profiles

Sector	without emergency measures	with emergency measures	Difference
Industrial	19	0	19
Services	531	261	270
Residential	2168	579	1590
Total losses	2718	840	1878

- Distribution of economic damage similar to 'demand function' approach
- But total losses an order of magnitude larger!
- Several possible reasons for under- or overestimation of losses with each method

Conclusions – 1

- Assessing the real-world costs of prolonged power outages is a highly uncertain exercise
- Extra costs due to emergency measures are markedly lower than the low-end welfare loss estimates
- ⇒Response of authorities to the electricity crisis were generally appropriate (not necessarily optimal)
- Reasonable due to small country size, one electricity company, good engineering knowledge of supply and demand structure

Conclusions – 2

- It is not clear whether power interruptions were implemented in economically optimal way
- The value created by households is ignored in engineering decisions of outages
- Energy authorities are mainly concerned with avoiding interruptions of electricity in industries, hotels and offices.
- *But* according to standard economic analysis the optimal response is to secure uninterrupted supply to users with high VOLL, i.e. households!

Conclusions – 3

- Production function approach to be treated with caution in case of prolonged outages:
 - Consumers adapt gradually so that the welfare losses on an annual basis may be lower than initially calculated
 - Repeated power disruptions may be more serious for firms than what a linear production function assumes
 - Reliability is a key aspect in internationally tradable sectors, so that repeated outages may be detrimental for key parts of the Cypriot economy such as tourism or banking
- Combination of economic and engineering approaches extremely useful for managing an energy crisis