Long-Run Forecasts of Final Energy Demand in Cyprus

T. Zachariadis, A. Michopoulos and M. Michael

<u>Energy & Environmental Economics & P</u>olicy (3EP) Research Group Department of Environmental Science & Technology Cyprus University of Technology tel. 25 002304, e-mail: t.zachariadis@cut.ac.cy

October 2014

Outline of the study

- Energy balance prepared for years 2012 & 2013
- Estimates of final and useful energy demand in:
 - Households
 - Hotels
- Description of forecast model
- Assumptions for the energy demand forecasts
 - Macroeconomic and fuel price assumptions
 - Scenarios considered
- Results
- Recommendations to national authorities

National Energy Balances for Cyprus

	Data	Provider	Source	
	otal sales and stock changes of troleum products for 2012 & 2013	Cystat	Online data available on website	
E	lectricity consumption by sector and sub-sector in 2012	Cystat	Publication 'Industrial Statistics 2012'	Curatat Curarua Statistical
	el consumption by industrial sub- ector (2-digit sectors according to classification NACE rev. 2)	Cystat	Survey on environmental expenditures in industry 2012 - Processed data provided to CUT	Cystat – Cyprus Statistical Service MECIT – Ministry of Energy,
	Imports and sales of biofuels	MECIT	Provisional energy balance of MECIT provided to CUT	Commerce, Industry and Tourism
	inal energy demand for biomass, ar thermal and geothermal energy in non-industrial sectors	MECIT	Provisional energy balance of MECIT provided to CUT	DLI – Department of Labour Inspection of the Ministry of Labour and Social Insurance;
	el consumption of cement plant for oduction purposes and for power generation	DLI	Data from annual pollutant emission report of cement plant submitted to DLI and provided by DLI to CUT	EAC – Electricity Authority of Cyprus CERA – Cyprus Energy
E	Electricity consumption by main sector in 2013	EAC	Data provided directly to CUT	Regulatory Authority TSO – Cyprus Transmission
Fu	el consumption of thermal power plants	EAC	Data provided directly to CUT	System Operator
pla	Power generation from thermal ants and from renewable sources connected to the electricity grid	CERA/TSO	Data provided directly to CUT	
Aut	tonomous power generation from renewable sources	MECIT	Data provided directly to CUT	
ger	ther power generation data (auto- consumption of thermal power plants, independent electricity meration and auto-consumption of cement plant, transmission and distribution losses)	CERA/TSO	Data provided directly to CUT	ONANEF/IZ OONTAL 2004

3EP

Final and useful energy use in households

- *Final* energy data from a 2009 survey of Cystat transformed to *useful* energy through assumed efficiency figures
- Turnover of equipment + assumptions for future efficiency leads to future useful + final fuel shares → input to the forecast model

FINAL ENERGY CONSUMPTION IN HOUSEHOLDS, 2009

Electric **Energy product** appliances & TOTAL Unit Space heating Water heating Space cooling Cooking lighting Electricity KWh 642 382 1.107 3.603 6.288 554 Heating oil litres 331 24 355 Kerosene litres 42 2 44 LPG kg 50 8 67 125 Biomass kq 231 2 11 244 kq Coal 48 48 Electricity kgoe 95 310 55 33 48 541 Heating oil kaoe 284 20 304 Kerosene kgoe 35 2 37 LPG kgoe 55 9 138 74 Biomass kgoe 83 88 1 4 kgoe Coal 34 34 ΥΝΟΛΟ kgoe 512 1.142 65 95 160 310

ANNUAL ENERGY CONSUMPTION BY END USE CATEGORY

OTANE/JETHING KYTH

Final and useful energy use in hotels

Final + useful energy consumption by fuel & end use (space & water heating, space cooling, lighting, appliances) based on:

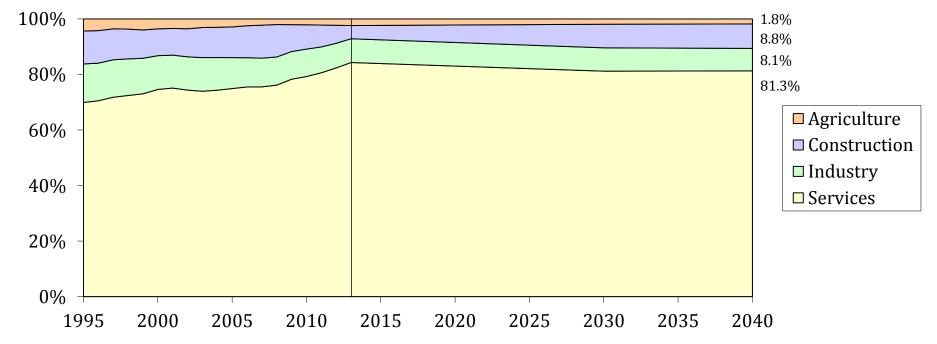
- experience of CUT staff from energy audits and analyses of residential and industrial buildings in Greece and Cyprus
- personal communication with engineers who are in charge of the operation of energy systems in large buildings
- MSc thesis of Mr. Marios Kerimis on hot water use in 4 & 5 star hotels of Cyprus (best graduate thesis award in Cyprus for 2014)

Results probably underestimate actual energy use in hotels, hence:

- Gaps in data were identified
- Recommendations for more surveys regarding electricity use, cooking equipment, and expanding the sample to other accommodation buildings such as hotel apartments and houses

Final Energy Demand Model Outline

Sectors:


- Industry (split to Cement industry & Other industry)
- Households
- Tertiary sector
- Agriculture
- Road passenger transport
- Road freight transport
- Air transport

<u>Fuels</u>: Gasoline, automotive diesel, LPG, gas/diesel oil, light fuel oil, heavy fuel oil, aviation fuel, electricity, coal, renewables (solar thermal, geothermal, hydrogen, biofuels, biomass)

Assumptions for Energy Demand Model - 1

- Macroeconomic data:
 - Past data from National Statistical Service (Cystat)
 - Future assumptions from European Commission's macro forecasts, IMF outlook and Ministry of Finance (as of May 2014)
 - Sectoral GDP shares:

Assumptions for Energy Demand Model - 2

- Fuel prices:
 - Data up to 2012/2013 from National Statistical Service (Cystat)
 - Future assumptions based on IEA medium forecast ('New Policies Scenario') from World Energy Outlook 2013 (Nov. 2013):
 - Crude oil price expected to reach \$113 per barrel in 2020 (at 2012 prices) and \$128 in 2035 (extrapolated to \$135 in 2040)
 - Future national fuel prices to evolve in line with crude oil price forecast – no 'policy shocks' in fuel taxation assumed
- Exogenous energy efficiency improvements in future assumed so as:
 - To attain energy savings calculated in a bottom-up way from MECIT in the frame of the 3rd NEEAP of April 2014; and
 - To be in line with obligations of Republic of Cyprus stemming from EU legislation (e.g. Directive on energy performance of buildings 2010/31/EC, Energy Efficiency Directive 2012/27/EU)

Assumptions for Energy Demand Model - 3

- Costs of technologies:
 - Estimated with the aid of national data from Cyprus Institute of Energy and consultation with local experts
 - Data refer to representative technologies per sector
 - Future evolution of costs based on 'reasonable' assumptions
- Model is flexible enough to easily accommodate updated energy data for the base year & changes in base year

Energy Demand Scenarios - 1

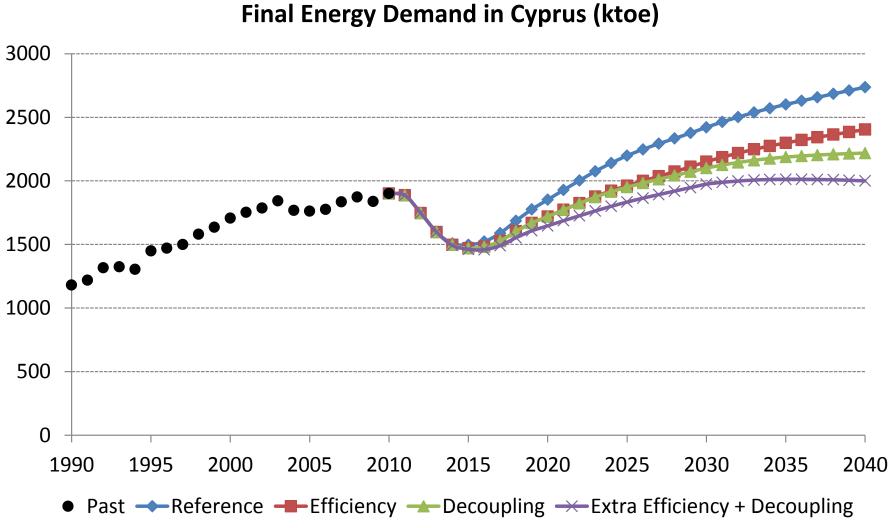
1. Reference scenario

- No additional measures at EU and national level are implemented after 2010
- Used as a benchmark because it was required by EU Directives for preparation of National Renewables Action Plan & National Energy Efficiency Action Plan (NEEAP)
- High-end energy forecast, not realistic anymore

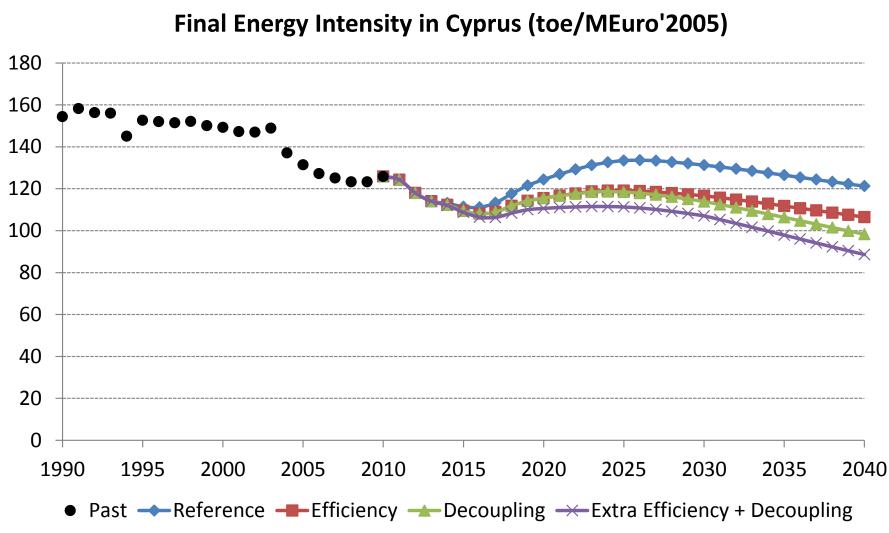
2. Energy efficiency scenario

- Assumes energy savings calculated in a bottom-up way from MECIT in the frame of the 3rd NEEAP of April 2014
- In line with obligations stemming from EU legislation (Directives 2010/31/EC & 2012/27/EU)
- Reproduces the latest official electricity forecast for the period 2014-2023 (TSO forecast approved in June 2014)

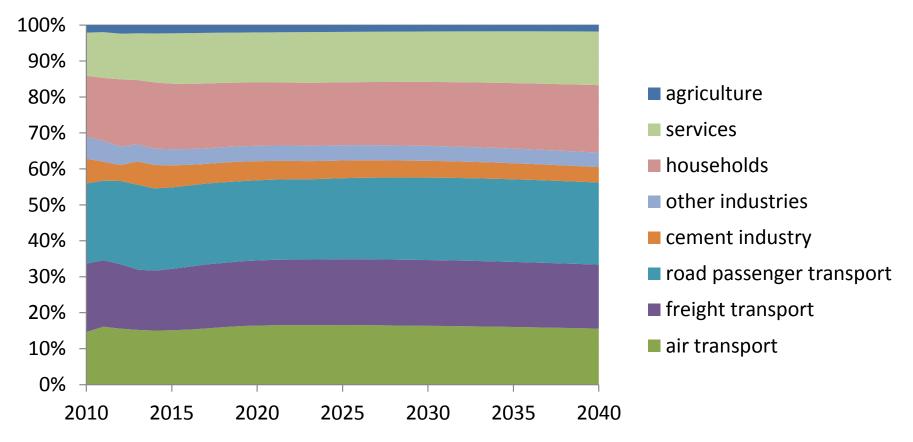
Energy savings between scenarios 1 & 2 are identical with those of the Cyprus 3rd NEEAP of April 2014

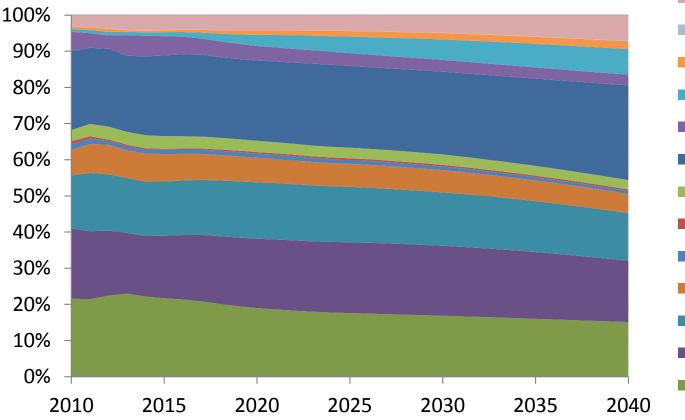

3. Decoupling scenario

- Same efficiency improvements with 'efficiency scenario'
- Assumes additionally that decoupling of energy use from economic activity takes place post-2020

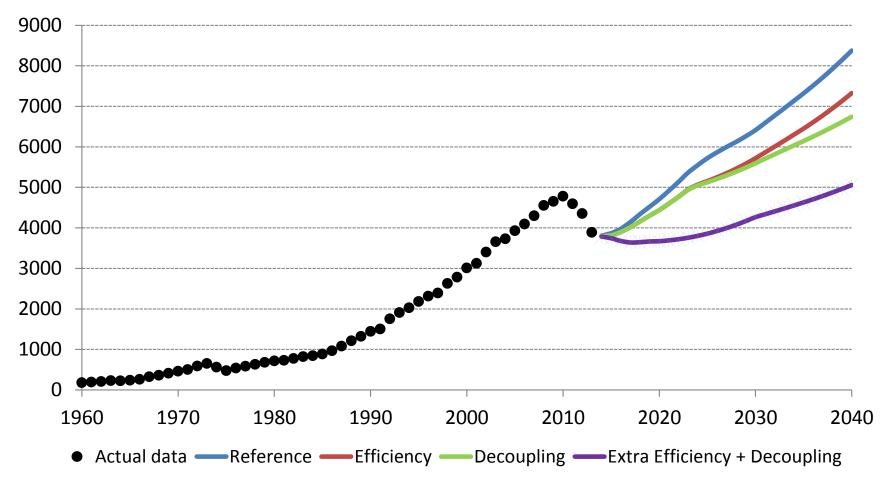

4. Extra efficiency + decoupling scenario

- Assumes decoupling as the previous scenario, plus more aggressive adoption of energy efficiency improvements e.g.:
 - near-zero energy building regulations
 - Strong regional and local energy saving initiatives from municipalities
 - > measures to exceed full compliance with the Energy Efficiency Directive 2012/27/EU
- Consistent with EU's 2030 energy & climate targets, serves as a low-end projection of energy needs in Cyprus up to 2040

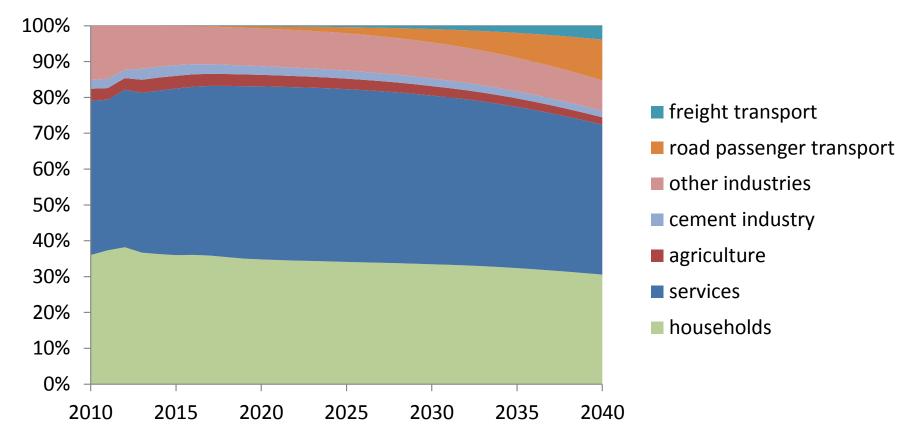




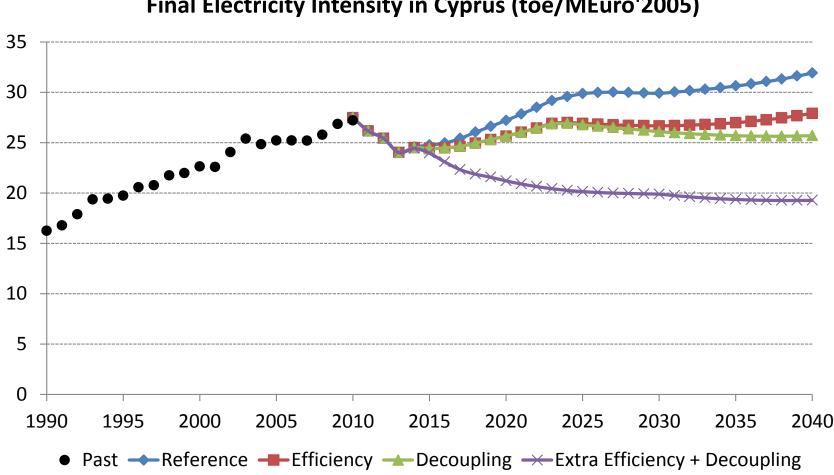
Energy Efficiency Scenario Final Energy Demand in Cyprus by Economic Sector


Energy Efficiency Scenario Final Energy Demand in Cyprus by Fuel

- Hydrogen
- Solar Thermal
- Geothermal
- Biomass
- Biofuels
- Other solid fuels
- Electricity
- Liquefied Petroleum Gas
- Heavy Fuel Oil
- Light Fuel Oil
- Gas oil
- Aviation Fuel
- Diesel
- Gasoline



Final Electricity Demand in Cyprus (million kWh)



Energy Efficiency Scenario Final Electricity Demand in Cyprus by Economic Sector

Projected savings in final energy consumption between 'energy efficiency' and 'extra efficiency + decoupling' scenarios

	2020		2030		2040	
	(ktoe)	(%)	(ktoe)	(%)	(ktoe)	(%)
Total savings across sectors and fuels	73	4.3%	177	8.2%	404	16.8%
of which in:						
air transport	0	0.0%	8	2.4%	44	11.8%
freight transport	0	0.0%	9	2.4%	50	11.8%
road passenger transport	0	0.0%	16	3.2%	73	13.4%
cement industry	1	1.2%	0	0.3%	2	1.5%
other industries	7	9.3%	13	14.1%	19	19.2%
Households	26	8.7%	58	15.1%	105	23.2%
services	37	15.5%	69	22.9%	106	29.5%
Agriculture	2	5.0%	3	7.4%	5	11.3%
Savings in final electricity	66	17.3%	125	25.4%	195	31.0%

Recommendations

- 1. Strengthen collaboration between authorities to produce detailed, commonly accepted and publicly available energy balances
- 2. Conduct energy use surveys at regular intervals especially for heterogeneous sectors such as households and tourism
- 3. Make a modest commitment of financial and human resources in order to maintain an energy modelling platform that can:
- Forecast energy production & consumption under different economic, technology & policy scenarios
- Determine least-cost energy & emission reduction paths
- Assess economic impact of energy and environmental policies on firms and households

