

Ground Source Heat Pump systems for nearly zero energy buildings: Energy, environmental and economic assessment for Cyprus

Project No: DIDAKTOR/0311/37

Coordinator: Ass. Prof. Theodoros Zachariadis

Young Researcher: Dr. Apostolos Michopoulos

Research Group on Energy & Environmental Economics & Policy (3EP) Department of Environmental Science and Technology Cyprus University of Technology

Nicosia, May 25, 2015

Project Overview

The aim of the project is to assess the use of GSHP (autonomous, hybrid and conjugated) in nearly zero energy buildings of Cyprus. This assessment is primarily focused on:

- Energy (primary energy reduction)
- Environmental (CO₂ emissions)
- Economic (NPV index in lifetime)

Selection of the typical reference buildings for Cypriot building stock

Within this frame the following actions have taken place:

- Detailed analysis on the Statistical Reviews
 - Building permits 2003-2012
 - Building typology
 - Building area and units

.4	A	B	C	D	E	F	G	н		J	K	L	M	N	0	P	Q	R	S
1																			
2																			
3	Κώδικας			2012			2011			2010			2009			2008			2007
	CC	ΚΑΤΗΓΟΡΙΑ ΕΡΓΟΥ	Αριθμός	Εμβαδόν	Αριθμός	Αριθμός	Εμβαδόν												
4	1996			(µ²)	OIKIOT.		(µ²)	οικιστ.		(µ²)									
5																			
6	11	Οικιστικά κτίρια	4,439	1,171,411	5,879	5,296	1,635,372	8,839	6,426	2,448,379	14,312	6,482	2,723,777	16,688	6,879	3,187,401	20,082	7,536	3,218,239
7	111	Μονοκατοικίες	3,593	727,663	2,761	4,220	942,996	3,731	5,036	1,252,538	5,511	4,988	1,298,410	6,233	5,110	1,357,098	6,263	5,725	1,474,442
В	112	Κτίρια με δύο ή ττερισσότερες κατοικίες	841	442,314	3,118	1,070	688,555	5,108	1,386	1,189,575	8,801	1,491	1,419,835	10,455	1,765	1,829,731	13,819	1,808	1,740,074
9		Διπτλοκατοικίες	315	114,526	820	357	184,089	1,520	323	149,247	1,039	296	144,248	1,012	414	267,178	1,877	597	358,095
.0		Οικιστικές πολυκατοικίες	407	238,255	1,986	579	376,622	2,906	899	757,649	5,954	1,058	1,005,834	7,827	1,206	1,300,902	10,399	1,057	1,125,851
.1		Μικτές πολυκατοικίες	116	89,533	309	126	116,099	571	149	200,367	829	123	240,213	1,266	119	197,044	761	127	185,188
.2		Συγκροτήματα εξοχ. διαμερισμάτων	3	0	3	8	11,745	111	15	82,312	979	14	29,540	350	26	64,607	782	27	70,940
.3	113	Συλλογικές κατοικίες	5	1,434		6	3,821		4	6,266		3	5,532		4	572		3	3,723
.4	12	Μη οικιστικά κτίρια	1,222	325,057		1,199	612,726		1,221	447,599		1,532	403,787		1,088	494,381		1,102	385,980
.5	121	Ξενοδοχεία και παρόμοια κτίρια	122	25,612		173	29,037		152	10,410		143	7,774		138	56,663		162	18,192
.6		Ξενοδοχεία	7	19,116		17	18,132		15	5,104		7	2,296		7	1,633		9	5,388
7		Τουριστικά διαμερίσματα και χωριά	16	3,065		29	4,437		23	1,947		16	1,448		22	49,442		27	7,487
8		Εστιατόρια, καφετέριες και μττυραρίες	98	2,841		125	6,188		114	3,359		119	3,567		108	4,607		123	3,793
.9		Άλλα κτίρια διακοττών	1	590		2	280		0	0		1	463		1	981		3	1,524
0	122	Κτίρια γραφείων	96	89,715		125	184,534		137	172,140		106	103,545		113	129,078		90	75,699
1	123	Κτίρια χονδρικού και λιανικού εμττορίου	98	21,748		125	133,126		109	35,560		131	58,847		112	51,137		114	75,709
2	124	Κτίρια μεταφορών και εττικοινωνιών	2	5,872		10	28,731		3	13,657		2	2,727		0	0		0	0
3	125	Βιομηχανικά κτίρια και αττοθήκες	207	119,703		219	188,681		237	148,434		281	166,337		254	211,877		284	163,816
4	126	Κτίρια για δημόσια θεάματα και για																	
5		ψυχαγωγικούς, εκπαιδευτικούς ή																	
.6		υγειονομικούς σκοπούς	127	32,161		164	31,890		134	44,526		116	26,089		91	23,422		92	39,307
7	127	Άλλα μη οικιστικά κτίρια	570	30,246		383	16,727		449	22,872		753	38,468		380	22,204		360	13,257
8	2	Έργα πολιτικού μηχανικού	1,000	3,398		335	4,939		409	21,927		319	8,895		283	7,327		250	8,587
9	3	Διαίρεση οικοπέδων και δρόμοι	453			590			641			543			585			633	
0	4	Κατασκευή δρόμων	58			86			80			74			61				
1																			
2		ΣΥΝΟΛΟ	7,172	1,499,866	5,879	7,506	2,253,037	8,839	8,777	2,917,905	14,312	8,950	3,136,459	16,688	8,896	3,689,109	20,082	9,521	3,612,806
3		Μεγάλα έργα	931	698,263	2,467	618	1,232,722	4,087	946	1,628,332	8,160	1,023	1,767,808	9,744	1,206	2,183,574	12,515	1,150	1,973,103
4		Μικρά έργα	6,241	801,603	3,412	6,888	1,020,315	4,752	7,831	1,289,573	6,152	7,927	1,368,651	6,944	7,690	1,505,535	7,567	8,371	1,639,703
5																		L	
6																			

Selection of the typical reference buildings for Cypriot building stock

- In-situ visits on recently finished and under construction buildings in order to capture the real construction practice and characteristics
- Discussions with construction engineers and designers

Architectural plan of the single-family reference building

REPUBLIC OF CYPRUS

Single-family house – Ground floor

CTURAL FUND

EUROPEAN UNION

Architectural plan of the single-family reference building

Single-family house – Upper floor

Geometrical model of the single-family reference building

Single-family house

Thermal characteristics of the single-family reference building

Current practice: In compliance with current Regulations of Energy Efficiency

Building Element	Thermal Transmittance U [W/(m ² ·K)]				
Building Element	Case Study	КДП 432/2013			
Masonry	0,58	0,72			
Reinforce Concrete	0,69	0,72			
Roof	0,61	0,63			
Openings	(U _f /U _g): (2,8/2,8)	U _w : 3,23			

The energy demand of the single-family reference building was calculated on an hourly basis with the aid of EnergyPlus software in 5 representative locations of Cyprus

Energy demand of the single-family reference building

Single-family building, energy simulation results – Current practice

Design and simulation of the Ground Source Heat Pump system

GSHP Design: EED 3.16

Energy consumption of the GHP: In-house software

Energy consumption of the circulation pump: Methodology proposed by Sfeir et al, 2005

🔄 🕞 Find Files 😾 🔒 😣 New Variable Analyze Cod 💼 🛄 @ Preferences 💿 🙆 Community Dpen Variable • Run and Time Help Compare Import Save Data Workspace 2 Clear Workspace - Clear Commands Simulink Layout 🔐 Set Path 🝃 💠 🛅 🔀 🕌 🔸 ((Client)E\$ + My Documents + Projects + 2013 - Didactor-CY + Buildings + MF House + GHEx Simulation + 1-Code www.buildingphysics.com - license for ENERGY DIVIS Input file:G:\My Documents\Projects\2013 - Didactor-CY\Buildings\OF B This output file:LIMASSOL CY DIDACTOR OF.OUT Date: 10/19/2014 Time: 🔽 🗕 Fluid temperatur Name MEMORY NOTES FOR PROJECT ✓ ·+· Peak cool load
✓ ··· Peak heat load data.txt Results.txt Sol_Thermal_Flux_Con_Line_Sour_asci.m >> Soil Thermal Flux Con Line Sour ascii live the number of borehole/s: Give the length of the borehole in meters: 91.7 OTTOR FACTS Give the distance of the top of borehole under the ground surface in meters: 1 Cost Number of boreholes Give the borehole radius in meters: 0.075 12 Give the outside radius of the tube in meters: 0.016 Borehole denth 123.41 m Total borehole length 1480.92 1 Give the inner radius of the tube in meters: 0.0131 Give the number of u-tubes in each borehole: 2 Give the thermal conductivity of the grout in W/mK: 2.4 Give the density of the grout in kg/m3: 1800 DESIGN DATA Give the specific heat capacity of the grout in J/kgK: 1223 Give the thermal conductivity of the tube in W/mK: 0.42 GROUND Give the initial soil temperature in degC: 19 Give the thermal conductivity of the soil in W/mK: 1.75 1.750 W/(m·K) 2.100 MJ/(m³·K) Ground thermal conductivity Give the density of the soil in kg/m3: 1900 Give the specific heat capacity of the soil in J/kgK: 1106 Ground heat capacity Ground surface temperature 19.50 °C JUN JUL 4110 Give the number of desirable simulation years: 20 Geothermal heat flux 0.0000 W/m4 BOREHOLE Command History Configuration: 11 ("12 : 1 x 12 line") 123.41 m 6.00 m Borehole depth Borehole spacing -Soil Thermal Flux Con Line Borehole installation Double-U 150.00 mm 32.000 mm Borehole diameter 91.7 🔽 🔸 Peak min U-pipe diameter V → Peak max V → Base min V → Base max U-pipe thickness 2,900 mm 0.075 J-pipe thermal conductivity 0.420 W/(m·K) 78.000 mm -0.016 U-pipe shank spacing 0.0131 Filling thermal conductivity 2.400 W/ (m·K) ontact resistance pipe/filling 0.0000 (m-K)/W -2.4 THERMAL RESISTANCES -1800 1223 Borehole thermal resistances are calculated. 0.42 Number of multipoles Internal heat transfer between upward and downward channel(s) is cons -19 Select a file to view details 1.75 NEAT CARRIER FLUTS 1900 1106 Thermal conductivity 0.6000 W/ (m·K) Specific heat capacity 4182.000 J/ (Kg·K) 998.300 Kg/m* Density Viscosity 0.001003 Kg/(m-s PB 🔘 📣 🧏 🖾 🖏 🗃 🚳 🕀 🕚 . 🛃 start 🔰 🔯 🗈 🛛)#****## () 🕾 📎 🎯 🖓 🔩 ())** 10:2 STRUCTURAL FUNDS REPUBLIC OF CYPRUS FUROPEAN UNION

Design and simulation of the Ground Source Heat Pump system

Single-family building, design and simulation results – Current practice

Analysis of the current building practice

Conventional system:

- Oil-fired boiler and air-to-air-heat pump and
- LPG-fired boiler and air-to-air-heat pump and
 - Boiler efficiency: 0.92
- Heat pump:
 - Air-to-air split type
 - Analysis on an hourly base using the:
 - Energy demand of the building envelope,
 - Ambient temperature retrieved from Meteonorm database
 - EER provided by HP manufacturer

Single-family building – Environmental evaluation

19.15% - 28.95% higher

Single-family building – Economic evaluation

In mainland and southern areas: 3,000 \in - 1,090 \in higher

In northern areas: 3,050 € - 1,785 € lower

FUROPEAN LINION

REPUBLIC OF CYPRUS

Optimization of the energy behavior of the building envelope

Energy improvement interventions on the buildings' envelope:

- Enhancement of the opaque envelope
 - Thermal insulation
- Enhancement of the glazing envelope
 - Enhance the thermal characteristics of the openings' frame and glass
- Minimization of solar thermal gains
 - External shading
- Free cooling

The optimum level of each intervention has been defined through a lifecycle cost analysis taking into consideration Regulation 244/2012/EC

Enhancement of the opaque envelope – **Thermal Insulation**

	Building Element					
	Reinforce Concrete	Masonry	Roof	Floor above Ground	Pilotis	
Scenario	Thermal	transmittance	of the building	g elements (U – [W/(m²·k	()])	
Baseline	0.69	0.59	0.61	3.28	0.59	
SBE1	0.61	0.49	0.50	0.77	0.49	
SBE2	0.51	0.42	0.43	0.50	0.42	
SBE3	0.44	0.37	0.38	0.43	0.37	
SBE4	0.38	0.33	0.34	0.38	0.33	
SBE5	0.34	0.30	0.30	0.34	0.30	
SBE6	0.30	-	0.27	0.30	0.27	
SBE7	0.28	-	0.25	0.28	0.25	
SBE8	0.25	-	0.23	0.25	0.23	
SBE9	-	-	0.22	0.23	-	
SBE10	-	-	-	0.22	-	
SBE11	-		-	0.20	-	

Enhancement of the glazing envelope

Scenario	Thermal transmittance of the window frame (U _f – [W/(m ² ·K)])	Thermal transmittance of the window glass $(U_g - [W/(m^2 \cdot K)])$	Solar factor (g _w)
Baseline	2.8	2.8	0.78
SW1	2.0	1.6	0.54
SW2	2.0	1.6	0.34
SW3	2.0	1.4	0.2
SW4	1.6	1.6	0.54
SW5	1.6	1.6	0.34
SW6	1.4	1.6	0.54
SW7	1.4	1.6	0.34
SW8	1.0	1.6	0.54
SW9	1.0	1.6	0.34

External Shading: Horizontal overhang

Scenario	Shading reduction factor
Baseline	1.00
SSO1	0.87
SSO2	0.73
SSO3	0.58
SSO4	0.44

Scenario	Opening percentage
Baseline	-
SFC1	25%
SFC2	50%
SFC3	75%
SFC4	100%

Characteristics of the low energy singlefamily building (NZEB)

Duilding Flomont	Location						
Building Element	Nicosia	Larnaca	Limassol	Paphos	Saittas		
Thermal transmittance of the opaque envelope [W/(m ² ·K)]	0.42	0.42	0.42	0.42	0.36		
Thermal transmittance of the ground floor [W/(m ² ·K)]	0.34	0.38	0.38	0.38	0.25		
Thermal transmittance of the roof [W/(m ² ·K)]	0.30	0.34	0.34	0.34	0.25		
Shading redaction factor	1.0	1.0	1.0	1.0	1.0		
Thermal properties of the window elements $[U_f / U_g / g_w]$	2.0 / 1.6 / 0.54	2.0 / 1.6 / 0.54					
Natural ventilation – Windows' opening percentage	100%	100%	100%	100%	100%		

Energy demand of the NZEB single-family reference building

Single-family building, energy simulation results – NZEB

Design and simulation of the Ground Source Heat Pump system

Single-family building, design and simulation results – NZEB

P

Saittas

2 x 58.5 m

Line: 1 x 2

Analysis of the **NZEB building**

Conventional system:

- Oil-fired boiler and air-to-air-heat pump and
- LPG-fired boiler and air-to-air-heat pump and
 - Boiler efficiency: 0.92
- Heat pump:
 - Air-to-air split type
 - Analysis on an hourly basis using:
 - Energy demand of the building envelope,
 - Ambient temperature retrieved from Meteonorm database
 - EER provided by HP manufacturer

REPUBLIC OF CYPRUS

EUROPEAN UNION

NZEB Single-family building – Environmental evaluation

NZEB Single-family building – Economic evaluation

In Larnaca & Limassol: 2,150 € - 850 € higher

FUROPEAN UNION

In other areas: 1,500 € - 300 € lower

REPUBLIC OF CYPRUS

Architectural plan of the multi-family reference building

Multi-family house – Typical floor (4 levels – 867.8 m²)

Geometrical model of the multi-family reference building

Multi-family house

Thermal characteristics of the multi-family reference building

Current practice: In compliance with current Regulations of Energy Efficiency

Building Element	Thermal Transmittance U [W/(m ² ·K)]				
Building Element	Case Study	КДП 432/2013			
Masonry	0,58	0,72			
Reinforce Concrete	0,65	0,72			
Roof	0,61	0,63			
Pilotis	0,59	0,63			
Openings	(U _f /U _g): (2,8/2,8)	U _w : 3,23			

The energy demand of the multi-family reference building was calculated on an hourly basis with the aid of EnergyPlus software in 5 representative locations of Cyprus

Energy demand of the multi-family reference building

Multi-family building, energy simulation results – Current practice

Design and simulation of the Ground Source Heat Pump system

GSHP Design: EED 3.16

Energy consumption of the GHP: In-house software

Energy consumption of the circulation pump: Methodology proposed by Sfeir et al, 2005

🔄 🕞 Find Files 😾 🔒 😣 New Variable Analyze Cod 💼 🛄 @ Preferences 💿 🙆 Community Dpen Variable • Run and Time Help Compare Import Save Data Workspace 2 Clear Workspace - Clear Commands Simulink Layout 🔐 Set Path 🝃 💠 🛅 🔀 🕌 🔸 ((Client)E\$ + My Documents + Projects + 2013 - Didactor-CY + Buildings + MF House + GHEx Simulation + 1-Code www.buildingphysics.com - license for ENERGY DIVIS Input file:G:\My Documents\Projects\2013 - Didactor-CY\Buildings\OF B This output file:LIMASSOL CY DIDACTOR OF.OUT Date: 10/19/2014 Time: 🔽 🗕 Fluid temperatur Name MEMORY NOTES FOR PROJECT ✓ ·+· Peak cool load
✓ ··· Peak heat load data.txt Results.txt Sol_Thermal_Flux_Con_Line_Sour_asci.m >> Soil Thermal Flux Con Line Sour ascii live the number of borehole/s: Give the length of the borehole in meters: 91.7 OTTOR FACTS Give the distance of the top of borehole under the ground surface in meters: 1 Cost Number of boreholes Give the borehole radius in meters: 0.075 12 Give the outside radius of the tube in meters: 0.016 Borehole denth 123.41 m Total borehole length 1480.92 1 Give the inner radius of the tube in meters: 0.0131 Give the number of u-tubes in each borehole: 2 Give the thermal conductivity of the grout in W/mK: 2.4 Give the density of the grout in kg/m3: 1800 DESIGN DATA Give the specific heat capacity of the grout in J/kgK: 1223 Give the thermal conductivity of the tube in W/mK: 0.42 GROUND Give the initial soil temperature in degC: 19 Give the thermal conductivity of the soil in W/mK: 1.75 1.750 W/(m·K) 2.100 MJ/(m³·K) Ground thermal conductivity Give the density of the soil in kg/m3: 1900 Give the specific heat capacity of the soil in J/kgK: 1106 Ground heat capacity Ground surface temperature 19.50 °C JUN JUL 4110 Give the number of desirable simulation years: 20 Geothermal heat flux 0.0000 W/m4 BOREHOLE Command History Configuration: 11 ("12 : 1 x 12 line") 123.41 m 6.00 m Borehole depth Borehole spacing -Soil Thermal Flux Con Line Borehole installation Double-U 150.00 mm 32.000 mm Borehole diameter 91.7 🔽 🔸 Peak min U-pipe diameter V → Peak max V → Base min V → Base max U-pipe thickness 2,900 mm 0.075 J-pipe thermal conductivity 0.420 W/(m·K) 78.000 mm -0.016 U-pipe shank spacing 0.0131 Filling thermal conductivity 2.400 W/ (m·K) ontact resistance pipe/filling 0.0000 (m-K)/W -2.4 THERMAL RESISTANCES -1800 1223 Borehole thermal resistances are calculated. 0.42 Number of multipoles Internal heat transfer between upward and downward channel(s) is cons -19 Select a file to view details 1.75 NEAT CARRIER FLUTS 1900 1106 Thermal conductivity 0.6000 W/ (m·K) Specific heat capacity 4182.000 J/ (Kg·K) 998.300 Kg/m* Density Viscosity 0.001003 Kg/(m-s PB 🔘 📣 🧏 🖾 🖏 🗃 🚳 🕀 🕚 . 🛃 start 🔰 🔯 🗈 🛛)#****## () 🕾 📎 🎯 🖓 🔩 ())** 10:2 STRUCTURAL FUNDS REPUBLIC OF CYPRUS FUROPEAN UNION

Design and simulation of the Ground Source Heat Pump system

Multi-family building, design and simulation results - Current practice

Analysis of the current building practice

Conventional system:

- Oil-fired boiler and air-to-air-heat pump and
- LPG-fired boiler and air-to-air-heat pump and
 - Boiler efficiency: 0.92
- Heat pump:
 - Air-to-air split type
 - Analysis on an hourly base using:
 - Energy demand of the building envelope,
 - Ambient temperature retrieved from Meteonorm database
 - EER provided by HP manufacturer

Multi-family building – Energy evaluation – Preliminary results

Multi-family building – Environmental evaluation – Preliminary results

-0.8% to 16.0% higher GSHP DI+A/C LPG+A/C

Multi-family building – Economic evaluation – Preliminary results

REPUBLIC OF CYPRUS

EUROPEAN UNION

Optimization of the energy behavior of the building envelope

Energy improvement interventions on the buildings' envelope:

- Enhancement of the opaque envelope
 - Thermal insulation
- Enhancement of the glazing envelope
 - Enhance the thermal characteristics of the openings' frame and glass
- Minimization of solar thermal gains
 - External shading
- Free cooling

The optimum level of each intervention has been defined through a lifecycle cost analysis taking into consideration Regulation 244/2012/EC

Characteristics of the low energy multi-family building (NZEB)

Duilding Element	Location					
Building Element	Nicosia	Larnaca	Limassol	Paphos	Saittas	
Thermal transmittance of the vertical opaque envelope [W/(m ² ·K)]	0.42	0.42	0.42	0.42	0.33	
Thermal transmittance of pilotis [W/(m ² ·K)]	0.37	0.42	0.49	0.49	0.27	
Thermal transmittance of the roof [W/(m ² ·K)]	0.34	0.34	0.38	0.38	0.25	
Shading redaction factor	1.0	1.0	1.0	1.0	1.0	
Thermal properties of the window elements $[U_f / U_g / g_w]$	2.0 / 1.6 / 0.54	2.0 / 1.6 / 0.54				
Natural ventilation – Windows' opening percentage	100%	100%	100%	100%	100%	

Energy demand of the NZEB Multi-family reference building

Multi-family building, energy simulation results – NZEB

Design and simulation of the Ground Source Heat Pump system

Analysis of the **NZEB building**

Conventional system:

- Oil-fired boiler and air-to-air-heat pump and
- LPG-fired boiler and air-to-air-heat pump and
 - Boiler efficiency: 0.92
- Heat pump:
 - Air-to-air split type
 - Analysis on an hourly basis using:
 - Energy demand of the building envelope,
 - Ambient temperature retrieved from Meteonorm database
 - EER provided by HP manufacturer

NZEB Multi-family building – Energy evaluation

NZEB Multi-family building – Environmental evaluation

11.5% - 15.3% higher

NZEB Multi-family building – Economic evaluation

In Saittas: 7,800 € - 9,500 € lower

Architectural plan of the office reference building

Office Building – Typical floor

4 levels 1,350.2 m²

450

* * * * * * * * EUROPEAN UNION

Geometrical model of office reference building

Office Building

URAL FUND

356

Thermal characteristics of office reference building

Current practice: In compliance with current Regulations of Energy Efficiency

Duilding Element	Thermal Transmittance U [W/(m ² ·K)]				
Building Element	Case Study	КДП 432/2013			
Masonry	0,58	0,72			
Reinforce Concrete	0,69	0,72			
Roof	0,61	0,63			
Pilotis	0,59	0,63			
Openings	(U _f /U _g): (2,8/2,8)	U _w : 3,23			

The energy demand of the single-family reference building was calculated on an hourly basis with the aid of EnergyPlus software in 5 representative locations of Cyprus

Energy demand of the office reference building

Office building, energy simulation results – Current practice

Design and simulation of the Ground Source Heat Pump system

GSHP Design: EED 3.16

Energy consumption of the GHP: In-house software

Energy consumption of the circulation pump: Methodology proposed by Sfeir et al, 2005

🔄 🕞 Find Files 😾 🔒 😣 New Variable Analyze Cod 💼 🛄 @ Preferences 💿 🙆 Community Dpen Variable • Run and Time Help Compare Import Save Data Workspace 2 Clear Workspace - Clear Commands Simulink Layout 🔐 Set Path 🝃 🕸 🔁 📔 🖡 🖌 ()Client (E\$ + My Documents + Projects + 2013 - Didactor-CY + Buildings + MF House + GHEx Simulation + 1-Code www.buildingphysics.com - license for ENERGY DIVIS Input file:G:\My Documents\Projects\2013 - Didactor-CY\Buildings\OF B This output file:LIMASSOL CY DIDACTOR OF.OUT Date: 10/19/2014 Time: 🔽 🗕 Fluid temperatur Name MEMORY NOTES FOR PROJECT ✓ ·+· Peak cool load
✓ ··· Peak heat load data.txt Results.txt Sol_Thermal_Flux_Con_Line_Sour_asci.m >> Soil Thermal Flux Con Line Sour ascii live the number of borehole/s: Give the length of the borehole in meters: 91.7 OTTOR FACTS Give the distance of the top of borehole under the ground surface in meters: 1 Cost Number of boreholes Give the borehole radius in meters: 0.075 12 Give the outside radius of the tube in meters: 0.016 Borehole denth 123.41 m Total borehole length 1480.92 1 Give the inner radius of the tube in meters: 0.0131 Give the number of u-tubes in each borehole: 2 Give the thermal conductivity of the grout in W/mK: 2.4 Give the density of the grout in kg/m3: 1800 DESIGN DATA Give the specific heat capacity of the grout in J/kgK: 1223 Give the thermal conductivity of the tube in W/mK: 0.42 GROUND Give the initial soil temperature in degC: 19 Give the thermal conductivity of the soil in W/mK: 1.75 1.750 W/(m·K) 2.100 MJ/(m³·K) Ground thermal conductivity Give the density of the soil in kg/m3: 1900 Give the specific heat capacity of the soil in J/kgK: 1106 Ground heat capacity Ground surface temperature 19.50 °C JUN JUL 4110 Give the number of desirable simulation years: 20 Geothermal heat flux 0.0000 W/m4 BOREHOLE Command History Configuration: 11 ("12 : 1 x 12 line") 123.41 m 6.00 m Borehole depth Borehole spacing -Soil Thermal Flux Con Line Borehole installation Double-U 150.00 mm 32.000 mm Borehole diameter 91.7 🔽 🔸 Peak min U-pipe diameter V → Peak max V → Base min V → Base max U-pipe thickness 2,900 mm 0.075 J-pipe thermal conductivity 0.420 W/(m·K) 78.000 mm -0.016 U-pipe shank spacing 0.0131 Filling thermal conductivity 2.400 W/ (m·K) ontact resistance pipe/filling 0.0000 (m-K)/W -2.4 THERMAL RESISTANCES -1800 1223 Borehole thermal resistances are calculated. 0.42 Number of multipoles Internal heat transfer between upward and downward channel(s) is cons -19 Select a file to view details 1.75 NEAT CARRIER FLUTS 1900 1106 Thermal conductivity 0.6000 W/ (m·K) Specific heat capacity 4182.000 J/ (Kg·K) 998.300 Kg/m* Density Viscosity 0.001003 Kg/(m-s PB 🔘 📣 🧏 🖾 🖏 🗃 🚳 🕀 🕚 . 🛃 start 🔰 🔯 🗈 🛛)#****## () 🕾 📎 🎯 🖓 🔩 ())** 10:2 STRUCTURAL FUNDS REPUBLIC OF CYPRUS FUROPEAN UNION

Design and simulation of the Ground Source Heat Pump system

Office building, design and simulation results – Current practice

REPUBLIC OF CYPRUS

Analysis of the current building practice

Conventional system:

- Oil-fired boiler and air-to-air-heat pump and
- LPG-fired boiler and air-to-air-heat pump and
 - Boiler efficiency: 0.92
- Heat pump:
 - Air-cooled chiller
 - Analysis on an hourly base using:
 - Energy demand of the building envelope,
 - Ambient temperature retrieved from Meteonorm database
 - EER provided by HP manufacturer

20.8% - 31.4% less

Office building – Environmental evaluation – Preliminary results

14.0% - 29.3% higher

Office building – Economic evaluation – Preliminary results

In mainland and southern areas: 16,235 € - 23,230 € higher

356

Optimization of the energy behavior of the building envelope

Energy improvement interventions on the buildings' envelope:

- Enhancement of the opaque envelope
 - Thermal insulation
- Enhancement of the glazing envelope
 - Enhance the thermal characteristics of the openings' frame and glass
- Minimization of solar thermal gains
 - External shading
- Free cooling

The optimum level of each intervention has been defined through a lifecycle cost analysis taking into consideration Regulation 244/2012/EC

Characteristics of the low energy Office building (NZEB)

Duilding Flomout	Location						
Building Element	Nicosia	Larnaca	Limassol	Paphos	Saittas		
Thermal transmittance of the vertical opaque envelope [W/(m ² ·K)]	0.49	0.49	0.49	0.49	0.42		
Thermal transmittance of pilotis [W/(m ² ·K)]	0.37	0.42	0.49	0.49	0.27		
Thermal transmittance of the roof [W/(m ² ·K)]	0.50	0.50	0.50	0.50	0.38		
Shading redaction factor	0.58	0.58	0.58	0.58	0.58		
Thermal properties of the window elements $[U_f / U_g / g_w]$	2.0 / 1.4 / 0.2	2.0 / 1.4 / 0.2	2.0 / 1.4 / 0.2	2.0 / 1.4 / 0.2	2.0 / 1.4 / 0.2		
Natural ventilation – Windows' opening percentage	100%	100%	100%	100%	100%		

Energy demand of the NZEB Office reference building

Office building, energy simulation results – NZEB

REPUBLIC OF CYPRUS

EUROPEAN UNION

Design and simulation of the Ground Source Heat Pump system

Analysis of the **NZEB building**

Conventional system:

- Oil-fired boiler and air-to-air-heat pump and
- LPG-fired boiler and air-to-air-heat pump and
 - Boiler efficiency: 0.92
- Heat pump:
 - Air cooled chiller
 - Analysis on an hourly base using:
 - Energy demand of the building envelope,
 - Ambient temperature retrieved from Meteonorm database
 - EER provided by HP manufacturer

NZEB Office building – Energy evaluation

NZEB Office building – Environmental evaluation

FUROPEAN UNION

20% - 40% higher

NZEB Office building – Economic evaluation

Office Building – Current practice – GHEx Design

Location	Boreholes x Length	Configuration
Nicosia	12 x 120 m	Line: 1 X 12
Larnaca	12 x 126 m	Line: 1 X 12
Limassol	12 x 123 m	Line: 1 X 12
Paphos	10 x 118 m	Line: 1 X 10
Saittas	9 x 125 m	Line: 1 x 9

		Hybrid	
Location	Boreholes x Length	Configuration	
Nicosia	7 x 70 m	Rec.: 2 x 3	
Larnaca	6 x 78.5 m	Rec.: 2 x 3	
Limassol	6 x 76 m	Rec.: 2 x 3	
Paphos	6 x 77 m	L.: 3 x 5	
Saittas	-	-	

1.1.1.1.1.1.1

Office Building – Current practice – Energy Evaluation

Office Building – NZEB – GHEx Design

Location	Boreholes x Length	Configuration
Nicosia	12 x 103 m	Line: 1 x 12
Larnaca	9 x 116 m	Line: 1 x 9
Limassol	10 x 117 m	Line: 1 x 10
Paphos	10 x 114 m	Line: 1 x 10
Saittas	12 x 92 m	Rec: 3 x 4

		i i y si i a
Location	Boreholes x Length	Configuration
Nicosia	8 x 70 m	Line: 1 x 8
Larnaca	7 x 78 m	Line: 1 x 7
Limassol	7 x 70 m	Line: 1 x 7
Paphos	8 x 73 m	Line: 1 x 8
Saittas	-	-

Hybrid

Thank you very much for your attention!!

Discussion

